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Abstract. In this article we demonstrate some specialized modules for in-
vestigating the dynamics of some generalized Hopf oscillators, an integral
part of a planned much more general Web-based application for scientific
computing. We also study some new hypothetical adaptive Hopf-like oscil-
lators. Numerical examples, illustrating our results using CAS MATHE-
MATICA are given.
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1. Two–state Hopf oscillator

The Hopf oscillator is a nonlinear oscillator described by the following
ordinary differential equations (see for example [1]):

dx

dt
= (a1 − (x2 + y2))x− dy + k(a sin(a2t+ a3))

dy

dt
= (a1 − (x2 + y2))y + dx

(1)

where d is a resonance constant, a1 is a constant that controls the limit
cycle radius, and k is a coupling constant.

The input signal is a sin(a2t + a3), where a is the amplitude of the
sinusoid, a2 is the external forcing frequency, and a3 is the phase of the
input sinusoid. This nonlinear oscillator is used as the building block for the
subsequent adaptive oscillator systems. Since this system is not adaptive,
the frequency has a single peak.

Some simulations.
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I. For given a1 = 0.001, d = 0.31, k = 0.02, a = 0.1, a2 = 0.35, a3 =
0.19 the simulations on the system (1) for x0 = 0.9; y0 = 0.8 are depicted
on Figure 1.

I.1 For given a1 = 0.001, d = 0.03, k = 0.013, a = 0.2, a2 = 0.4, a3 =
0.2 the simulations on the system (1) for x0 = 0.9; y0 = 0.9 are depicted
on Figure 2.

Figure 1. a) The solutions of

differential system; b) Phase portrait;

(example I).

Figure 2. a) The solutions of

differential system; b) Phase portrait;

(example I.1).

2. A modified two–state Hopf oscillator

We consider the following new extension of the model (1):
dx

dt
= (a1 − (x2 + y2))x− d(t)y + k(t)(a sin(a2t+ a3))

dy

dt
= (a1 − (x2 + y2))y + d(t)x

(2)

d(t) =
l∑

i=0

αit
i; k(t) =

n∑
i=0

βit
i.
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Some simulations.

II. For given a1 = 0.001, a = 0.2, a2 = 0.4, a3 = 0.2 and d(t) =
0.0001 + 0.015t− 0.000001t2, k(t) = 0.002− 0.000001t+ 0.00000001t2 the
simulations on the system (2) for x0 = 0.9; y0 = 0.9 are depicted on
Figure 3a and Figure 3b. For the phase portrait see Figure 3c.

Figure 3. a) The solutions of differential system;
b) ParametricP lot3D[...] in CAS Mathematica for x(t), y(t); (example II);

c) The phase portrait (example II).

II.1 For given a1 = 0.01, a = 0.1, a2 = 0.9, a3 = 0.7 and d(t) =
0.0001 + 0.015t− 0.000001t2, k(t) = 0.002− 0.000001t+ 0.00000001t2 the
simulations on the system (2) for x0 = 0.2; y0 = 0.1 are depicted on
Figure 4a and Figure 4b. For the phase portrait see Figure 4c.

Figure 4. a) The solutions of differential system;
b) ParametricP lot3D[...] in CAS Mathematica for x(t), y(t); (example II.1);

c) The phase portrait (example II.1).
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II.2 For given a1 = 0.02, a = 0.2, a2 = 0.6, a3 = 0.5 and d(t) =
0.0001 + 0.025t − 0.000013t2 + 0.000000001t3, k(t) = 0.005 − 0.00001t +
0.0000001t2− 0.00000001t3 the simulations on the system (2) for x0 = 0.3;
y0 = 0.1 are depicted on Figure 5a and Figure 5b. For the phase portrait
see Figure 5c.

Figure 5. a) The solutions of differential system;

b) ParametricP lot3D[...] in CAS Mathematica for x(t), y(t); (example II.2); The phase

portrait (example II.2).

3. Three–state adaptive Hopf oscillator

The three state Hopf oscillator is defined as:
dx

dt
= (a1 − (x2 + y2))x− dy + k(a sin(a2t+ a3))

dy

dt
= (a1 − (x2 + y2))y + dx

dd

dt
= −k(a sin(a2t+ a3))y

(3)

It should be noted that the external input signal is injected into both the
x and the d states.

Some simulations.

III. For given k = 0.013, a1 = 0.001, a = 0.2, a2 = 0.4, a3 = 0.2 the
simulations on the system (3) for x0 = 0.9; y0 = 0.8, d0 = 0.16 are depicted
on Figure 6a. Using operator ParametricP lot3D[...] in CAS Mathematica
for component of solution – x(t), y(t) see Figure 6b.
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III.1 For given k = 0.014, a1 = 0.0009, a = 1, a2 = 0.05, a3 = 0.01 the
simulations on the system (3) for x0 = 0.5; y0 = 0.4, d0 = 0.16 are depicted
on Figure 7a. Using operator ParametricP lot3D[...] in CAS Mathematica
for component of solution – x(t), y(t) see Figure 7b.

Figure 6. a) The solutions of
differential system; (example III);

b) ParametricP lot3D[...];

(example III).

Figure 7. a) The solutions of
differential system; (example III.1);

b) ParametricP lot3D[...]; (example

III.1).

4. Four–state adaptive Hopf oscillator

The four–state Hopf oscillator is defined as (see for example [2]):

dx

dt
= (a1 − (x2 + y2))x− dy + k(a sin(a2t+ a3)− k1b)

dy

dt
= (a1 − (x2 + y2))y + dx

dd

dt
= −k(a sin(a2t+ a3)− k1b)y

db

dt
= a4(a sin(a2t+ a3)− k1b)x

(4)

Here a4 is a coupled constant. A circuit implementation of the system
(4) was designed, fabricated and tested is given in [2].

Some simulations.

IV. For given k = 0.013, k1 = 0.15, a1 = 0.001, a = 0.2, a2 =
0.4, a3 = 0.2, a4 = 0.3 the simulations on the system (4) for x0 = 0.9;
y0 = 0.8, d0 = 0.13, b0 = 0.12 are depicted on Figure 8.
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IV.1 For given k = 0.014, k1 = 0.01, a1 = 0.0009, a = 1, a2 =
0.04, a3 = 0.02, a4 = 0.001 the simulations on the system (4) for x0 = 0.9;
y0 = 0.8, d0 = 0.13, b0 = 0.12 are depicted on Figure 9.

Figure 8. The solutions of differential

system; (example IV).

Figure 9. The solutions of differential

system; (example IV.1).

5. A new modified four–state adaptive Hopf oscillator

We define the following modification of the four–state adaptive Hopf
oscillator:

dx

dt
= (a1 − (x2 + y2))x− dy + k(a sin(a2t+ a3)− k1b)

dy

dt
= (a1 − (x2 + y2))y + dx

dd

dt
= −k(a sin(a2t+ a3)− k1b)y

db

dt
= a4(t)(a sin(a2t+ a3)− k1b)x

(5)

where a4(t) =
n∑
i=0

γit
i.

Remark. Performing a rigorous local analysis on system (5) follows
the idea discussed in [1] and will be omitted here.

Some simulations.

V. For given k = 0.014, k1 = 0.01, a1 = 0.0009, a = 1, a2 = 0.4, a3 =
0.2 and a4(t) = 0.0001 + 0.0005t − 0.0000001t2 + 0.000000001t3 the simu-
lations on the system (5) for x0 = 0.9; y0 = 0.8, d0 = 0.13, b0 = 0.12 are
depicted on Figure 10a and Figure 10b.
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V.1 For given k = 0.015, k1 = 0.04, a1 = 0.007, a = 1.1, a2 =
0.07, a3 = 0.05 and a4(t) = 0.01 − 0.0003t + 0.0000002t2 − 0.000000003t3

the simulations on the system (5) for x0 = 0.9; y0 = 0.8, d0 = 0.13,
b0 = 0.12 are depicted on Figure 11a–11b.

Figure 10. a) The solutions of

differential system; (example V); b)

ParametricP lot3D[...]; (example V).

Figure 11. a) The solutions of

differential system; (example V.1); b)

ParametricP lot3D[...]; (example V.1).

6. Concluding Remarks

In addition to the possibilities described in detail in [3]–[15], which
our Web–application provides, in this paper we demonstrated some mod-
ules with which the planned Web–platform is upgraded, in the following
directions:

– dynamics of the two–state Hopf oscillator;

– dynamics of the new modified two–state Hopf oscillator;

– dynamics of the three and four–state adaptive Hopf oscillators;

– dynamics of the new modified four–state adaptive Hopf oscillator
with a suitable, user-fixed “coupled function”.

The following three examples using the new model (5) illustrate in-
teresting dynamics typical of this type of oscillators. We hope that these
results will be of interest to specialists working in this scientific direction.

We presented only a small part of the platform’s capabilities.

The Web platform requires the user to enter specialized data needed
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to run simulations, especially for the new models of type (2) and (5) (co-
efficients of the polynomial d(t), k(t) and a4(t)).

Coupled nonlinear oscillators are abundant in biology, physics, and
chemical reaction systems [16]–[18].

Some popular techniques for deriving the phase dynamics of coupled
oscillators can be found in [19].

We will explicitly note that the theoretical apparatus for studying
the circuit implementation (design, fabricating, etc.) of the considered dif-
ferential models is extremely complex and requires serious consideration
before being adapted for its possible inclusion in our planned Web–based
platform for scientific calculations. Of course, such an analysis is impera-
tive and remains our top priority for future development.
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