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YAMABE SOLITONS AND YAMABE ALMOST
SOLITONS WITH VERTICAL POTENTIAL ON

SOME SPECIAL TYPES OF ALMOST CONTACT
COMPLEX RIEMANNIAN MANIFOLDS

Mancho Manev

Abstract. We summarize our results on Yamabe solitons and Yamabe al-
most solitons considered on almost contact complex Riemannian manifolds,
known also as almost contact B-metric manifolds. These manifolds are en-
dowed with a pair of mutually associated pseudo-Riemannian metrics with
respect to the almost contact structure. Each of these metrics is special-
ized as a Yamabe (almost) soliton with a vertical potential, i.e. collinear
to the Reeb vector field. The resulting manifolds are then investigated in
three important cases with geometric significance. The first is when the
manifold is cosymplectic, i.e. with parallel structure tensors. The second
case is of such a manifold of Sasaki-like type, i.e. its complex cone is a
holomorphic complex Riemannian manifold (also called a Kähler–Norden
manifold). The third case is when the soliton potential is torse-forming,
i.e. it satisfies a certain recurrence condition for its covariant derivative
with respect to the Levi-Civita connection of the corresponding metric. The
studied solitons are characterized. Explicit examples are commented, and
the properties obtained in the theoretical part are confirmed.
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1. Introduction

The notion of the Yamabe flow is introduced in [1, 2] by R. S. Hamil-
ton to construct metrics with constant scalar curvature τ(t) correspond-
ing to a time-dependent family of (pseudo-)Riemannian metrics g(t) on a
smooth manifold M. The metric g(t) is said to evolve by Yamabe flow if
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g(t) satisfies the following evolution equation

∂

∂t
g(t) = −τ(t)g(t), g(0) = g0.

A self-similar solution of the Yamabe flow on (M, g) is called a Yam-
abe soliton and is determined by the following equation

1

2
Lϑg = (τ − λ)g, (1)

where Lϑg denotes the Lie derivative of g along the vector field ϑ called
the soliton potential, and λ is the soliton constant (e.g. [3]). Briefly, we
denote this soliton by (g;ϑ, λ). In the case that λ is a differential function
on M, the solution is called an Yamabe almost soliton.

Many authors have studied Yamabe (almost) solitons on different
types of manifolds in the recent years (see e.g. [4, 5, 6, 7, 8, 9, 10]). The
investigations of this kind of flows and the corresponding (almost) soli-
tons cause an interest in mathematical physics because the Yamabe flow
corresponds to fast diffusion of the porous medium equation [12].

The study of Yamabe solitons on almost contact complex Riemannian
manifolds (abbreviated accR manifolds), there called almost contact B-
metric manifolds, was started by the author with [9]. The geometry of these
manifolds is largely determined by the presence of a pair of B-metrics that
are related each other by the almost contact structure. Two of the simplest
types of the considered manifolds are studied there, namely cosymplectic
and Sasaki-like, introduced in [15].

In [10], the author continues this study for Yamabe solitons on accR
manifolds with vertical torse-forming potential derived by contact confor-
mal transformation of general type.

The study continues in [11] with the use of a condition for Yamabe
almost soliton for each of the B-metrics in the case of Sasaki-like manifolds.

The present paper gives a review on the latest results on this special
types metrics for the manifolds under interest.

2. accR manifolds

Let (M,ϕ, ξ, η, g) be an accR manifold, i.e. M is a (2n + 1)-dimen-
sional differentiable manifold with an almost contact structure (ϕ, ξ, η) and
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a pair of pseudo-Riemannian metrics g and g̃ of signature (n+ 1, n), such
that [13]

ϕξ = 0, ϕ2 = −ι+ η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1,

g(X, Y ) = −g(ϕX,ϕY ) + η(X)η(Y ), g̃(X, Y ) = g(X,ϕY ) + η(X)η(Y ),

where ι stands for the identity transformation on the algebra X(M) on
the smooth vector fields on M . Here and further, X, Y , Z will stand for
arbitrary elements of X(M) or vectors in the tangent space TpM of M at
an arbitrary point p in M .

The fundamental tensor F of type (0,3) on (M, ϕ, ξ, η, g) is defined
by F (X, Y, Z) = g

(
(∇Xϕ)Y, Z

)
, where ∇ is the Levi-Civita connection of

g, and the following Lee forms are associated with it:

θ = gijF (Ei, Ej, ·), θ∗ = gijF (Ei, ϕEj, ·), ω = F (ξ, ξ, ·),

where gij are the components of the inverse matrix of g with respect to a
basis {Ei; ξ} (i = 1, 2, . . . , 2n) of TpM .

A classification of these manifolds in terms of F is given in [13]. This
classification includes eleven basic classes F1, F2, . . . , F11, intersected in
the class F0 of cosymplectic B-metric manifolds defined by condition F = 0.

A contact conformal transformation of general type is introduced in
[14] as follows

ξ̄ = e−wξ, ḡ = e2u cos 2v g + e2u sin 2v g̃

η̄ = ewη, +
(
e2w − e2u cos 2v − e2u sin 2v

)
η ⊗ η,

(2)

where u, v, w are differentiable functions on M . Such a transformation
preserves the manifolds of the main classes F1, F4, F5 and F11.

3. Yamabe solitons

As in [9], we say that the B-metric ḡ with a scalar curvature τ̄ gen-
erates a Yamabe soliton with potential ξ̄ and soliton constant σ̄ on a con-
formal accR manifold (M,ϕ, ξ̄, η̄, ḡ), if the following condition is satisfied

1

2
Lξ̄ḡ = (τ̄ − σ̄)ḡ.

In [9] it was proved that an accR manifold which is cosymplectic
can be transformed by (2) so that ḡ is a Yamabe soliton with potential ξ̄
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and a soliton constant σ̄ if and only if the functions (u, v, w) of the used
transformation satisfy the conditions

du(ξ) = 0, dv(ξ) = 0, dw = dw(ξ)η.

Moreover, the obtained Yamabe soliton has a constant scalar curvature
τ̄ = σ̄ and the obtained accR manifold belongs to the subclass of F1

determined by:

θ̄ = 2n
{

du ◦ ϕ− dv ◦ ϕ2
}
, θ̄∗ = −2n

{
du ◦ ϕ2 + dv ◦ ϕ

}
.

If (M, ϕ, ξ, η, g) is Sasaki-like, then the condition ∇Xξ = −ϕX is
met. These manifolds are determined in [15] in terms of F by

F (X, Y, Z) = g(ϕX,ϕY )η(Z) + g(ϕX,ϕZ)η(Y ).

Then, we have proved that an accR manifold that is Sasaki-like can
be transformed by (2) so that ḡ is a Yamabe soliton with potential ξ̄
and a soliton constant σ̄ if and only if the functions (u, v, w) of the used
transformation satisfy the conditions

du(ξ) = 0, dv(ξ) = 1, dw = dw(ξ)η.

Moreover, the obtained Yamabe soliton has a constant scalar curvature
τ̄ = σ̄ and the obtained manifold belongs to a subclass of the main class
F1 determined by:

θ̄ = 2n
{

du ◦ ϕ− dv ◦ ϕ2
}
, θ̄∗ = 2n {du− dv ◦ ϕ} .

4. Yamabe solitons, contact conformal transformations and
torse-forming vector fields

Further, we consider a torse-forming vector field ϑ on an accR man-
ifold (M, ϕ, ξ, η, g). A vector field ϑ on (M, g) is called torse-forming
vector field if it satisfies the following condition for arbitrary vector field
x ∈ X(M)

∇xϑ = f x+ γ(x)ϑ,

where f is a differentiable function and γ is a 1-form [18, 16]. The 1-form
γ is called the generating form and the function f is called the conformal
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scalar of ϑ [17]. The essential example of a torse-forming ξ is when the
manifold is of F5.

It is significant case when ϑ is a vertical vector field on M, i.e.
ϑ = k ξ, where k is a nonzero function onM and obviously k = η(ϑ) holds
true.

It was proved in [10] that an F5-manifold with a vertical torse-forming
vector field ϑ can be transformed by an accR transformation so that ḡ is
a Yamabe soliton with potential ϑ and a soliton constant σ if and only if
the functions (u, v, w) of the used transformation satisfy the conditions

du(ξ) = −f
k
, dv(ξ) = 0, dw = dw(ξ)η.

Moreover, the obtained Yamabe soliton has a constant scalar curva-
ture τ̄ = σ and the obtained accR manifold belongs to the subclass of F1

determined by

θ̄ = 2n {du ◦ ϕ+ dv} , θ̄∗ = −2n
{

du ◦ ϕ2 + dv ◦ ϕ
}
, ω̄ = 0.

As a corollary, if (u, v) are a pair of ϕ-holomorphic functions then
the transformed manifold belongs to the special class F0 of cosymplectic
accR manifolds.

5. Pair of associated Yamabe almost solitons

Let us consider an accR manifold (M, ϕ, ξ, η, g) with a pair of asso-
ciated Yamabe almost solitons generated by the pair of B-metrics g and g̃,
i.e. (g;ϑ, λ) and (g̃; ϑ̃, λ̃), which are mutually associated by the (ϕ, ξ, η)-
structure. Then, along with (1), the following identity also holds

1

2
Lϑ̃g̃ = (τ̃ − λ̃)g̃,

where ϑ̃ and λ̃ are the soliton potential and the soliton function, respec-
tively, and τ̃ is the scalar curvature of the manifold with respect to g̃. We
suppose that the potentials ϑ and ϑ̃ are vertical, i.e. there exists differen-
tiable functions k and k̃ on M, such that we have

ϑ = kξ, ϑ̃ = k̃ξ,

where k(p) 6= 0 and k̃(p) 6= 0 at every point p of M . Briefly, we denote
these potentials by (ϑ, k) and (ϑ̃, k̃).
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5.1. The case when the underlying accR manifold is Sasaki-like

Obviously, Sasaki-like accR manifolds form a subclass of the class
F4 of the Ganchev–Mihova–Gribachev classification. According to [11],
there does not exist a Sasaki-like manifold (M, ϕ, ξ, η, g) equipped with
a g-generated Yamabe almost soliton having a vertical potential. The
corresponding statement for g̃-generated Yamabe almost soliton with a
vertical potential is also valid.

5.2. The case of a torse-forming vertical potential

Let an accR manifold (M, ϕ, ξ, η, g) be equipped with a Yamabe
almost soliton (g;ϑ(f, k), λ), where ϑ is a vertical torse-forming potential.

Then the scalar curvature τ of this manifold is the sum of the confor-
mal scalar f of ϑ and the soliton function λ, i.e. τ = f + λ. As a corollary
we have that the potential ϑ(f, k) of any Yamabe almost soliton (g;ϑ, λ)
on (M, ϕ, ξ, η, g) is a torqued vector field, i.e. γ(ϑ) = 0.

Similarly, the following analogous assertions are valid. Let an accR
manifold (M, ϕ, ξ, η, g) be equipped with (g̃; ϑ̃(f̃, k̃), λ̃), a Yamabe almost
soliton with a vertical torse-forming potential ϑ̃. Then the scalar curvature
τ̃ of this manifold is the sum of the conformal scalar f̃ of ϑ̃ and the soliton
function λ̃, i.e. τ̃ = f̃ + λ̃. The potential ϑ̃(f̃, k̃) of any Yamabe almost
soliton (g̃; ϑ̃, λ̃) on (M, ϕ, ξ, η, g) is a torqued vector field.

The relation between tha scalar curvatures in this case takes the form

τ̃ = −τ ∗ − 2n(2n+ 1)h2 − 4n dh(ξ), h =
f

k
.

Finally, various explicit examples are given in [9, 10, 11] of the studied
manifolds. They are constructed as a 5-dimensional Lie group, a hypersur-
face in (2n + 2)-dimensional real space and the cone over a 2-dimensional
complex space form with Norden metric. The computed characteristics for
them support the obtained theoretical results.
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