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EXAMPLES OF EVENTS

THAT ARE PAIRWISE INDEPENDENT

BUT NOT MUTUALLY INDEPENDENT

Petar Kopanov

Abstract. The concept of independence is central to Probability Theory.
When we have more than 2 random events we have different types of in-
dependence: ensemble independence and pairwise independence. In this
work, we will give examples of N random events A1, A2, A3, . . . , AN ,
N ≥ 3, which are not independent in aggregate, but for each of their subset
of k, 1 < k < N events An1, An2, An3, . . . , Ank these events are mutu-
ally independent (and therefore pairwise independent). The examples are
constructed using a symmetric die with 2N−1 faces, which are colored N
different colors, conventionally denoted by the numbers 1, 2, 3, . . . , N .

Key words: Independence, Pairwise independence, Mutual independence.

We will describe the scheme for N = 3 colors, N = 4 colors (to better
illustrate the idea) and for any number of N ≥ 3 colors.

We will use the well-known combinatorial equality

+∞∑
k=−∞

C2k
n =

+∞∑
k=−∞

C2k+1
n = 2n−1

(for k < 0 or 2k > n C2k
n = C2k+1

n = 0 so the sums are actually finite).

First we consider experiment with odd number of colors placed on
each side of the dice: on N = C1

N walls there is 1 color applied, on
N.(N−1).(N−2)

6 = C3
N walls have 3 colors applied, on N.(N−1).(N−2).(N−3).(N−4)

120 =
C5
N walls of dice have 5 colors applied, and so on.

1) The dice is a regular tetrahedron. N = 3 colors. 4 =
+∞∑

k=−∞
C2k+1

3 =

23−1 (Figure 1, Bernstein Example).

On the sides of the dice there are 3 colors – white (1), green (2) and
red (3). There is one color on 3 = C1

3 walls and 3 colors on 1 = C3
3 walls.
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Then

|A1| = |A2| = |A3| = 2 −→ P (A1) = P (A2) = P (A3) =
2

4
=

1

2
|A1A2| = |A1A3| = |A2A3| = 1 −→

P (A1A2) =
1

4
= P (A1).P (A2),

P (A1A3) =
1

4
= P (A1).P (A3),

P (A2A3) =
1

4
= P (A2).P (A3)

|A1A2A3| = 1 −→ P (A1A2A3) =
1

4
6= P (A1).P (A2).P (A3) =

1

8

Figure 1. Figure 2.

2) The dice is a regular octahedron. N = 4 colors. 8 =
+∞∑

k=−∞
C2k+1

4 =

24−1 (Figure 2).

There are 4 colors on the sides of the dice – white (1), green (2), red
(3) and blue (4). There is one color on 4 = C1

4 walls and 3 colors on 4 = C3
4

walls.

Then

|A1| = |A2| = |A3| = |A4| = 4 −→ P (A1) = P (A2) = P (A3) =
4

8
=

1

2
|A1A2| = |A1A3| = |A1A4| = |A2A3| = |A2A4| = |A3A4| = 2 −→
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P (A1A2) =
2

8
=

1

4
= P (A1).P (A2),

P (A1A3) =
2

8
=

1

4
= P (A1).P (A3),

P (A1A4) =
2

8
=

1

4
= P (A1).P (A4),

P (A2A3) =
2

8
=

1

4
= P (A2).P (A3),

P (A2A4) =
2

8
=

1

4
= P (A2).P (A4),

P (A3A4) =
2

8
=

1

4
= P (A3).P (A4).

|A1A2A3| = |A1A2A4| = |A1A3A4| = |A2A3A4| = 1 −→

P (A1A2A3) =
1

8
= P (A1).P (A2).P (A3),

P (A1A2A4) =
1

8
= P (A1).P (A2).P (A4),

P (A1A3A4) =
1

8
= P (A1).P (A3).P (A4),

P (A2A3A4) =
1

8
= P (A2).P (A3).P (A4),

P (A1A2A3A4) = 0 6= P (A1).P (A2).P (A3).P (A4) =
1

16

3) General case. N colors. N ≥ 3.

Figure 3. Bipyramid with 16 = 25−1

walls. Its walls will be colored with

N = 5 colors.

Figure 4. Bipyramid with 32 = 26−1

walls. Its walls will be colored with

N = 6 colors.

The dice is a regular bipyramid. The base of a bipyramid is a regular
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polygon with 2N−2 sides, and a bipyramid has
+∞∑

k=−∞
C2k+1
N = 2N−1 faces

that are equal isosceles triangles.

The sides of the dice have N colors.

OnN = C1
N walls there is one color, on N.(N−1).(N−2)

6 = C3
N walls there

are 3 colors, on N.(N−1).(N−2).(N−3).(N−4)
120 = C5

N walls there are 5 colors, and
so on.

The total number of colored walls is C1
N + C3

N + C5
N + · · · = 2N−1.

Let Ak = {the kth color has appeared on the wall}, k = 1, 2, 3, 4, . . . , N .

|Ak| = C0
N−1 + C2

N−1 + C4
N−1 + C6

N−1 + · · · = 2N−2

−→ P (Ak) =
2N−2

2N−1
=

1

2
|Ak1.Ak2| = C−1

N−2 + C1
N−2 + C3

N−2 + C5
N−2 + ... = 2N−3

−→ P (Ak1.Ak2) =
2N−3

2N−1
=

1

4
= P (Ak1).P (Ak2)

|Ak1.Ak2.Ak3| = C−2
N−3 + C0

N−3 + C2
N−3 + C4

N−3 + · · · = 2N−4

−→ P (Ak1.Ak2.Ak3) =
2N−4

2N−1
=

1

8
= P (Ak1).P (Ak2).P (Ak3)

(The first combinations are for the one-color walls, the second are for the
three-color walls, the third are for the five-color walls, etc. )

. . .

|Ak1.Ak2.Ak3 . . . Aks| = C1−s
N−s + C3−s

N−s + C5−s
N−s + C7−s

N−s + · · · = 2N−s−1

−→ P (Ak1.Ak2.Ak3. . . . Aks) =
2N−s−1

2N−1

=
1

2s
= P (Ak1).P (Ak2).P (Ak3) . . . P (As)

. . .

|Ak1.Ak2.Ak3 . . . AkN−1| = 1

−→ P (Ak1.Ak2.Ak3 . . . AkN−1) =
1

2N−1

= P (Ak1).P (Ak2).P (Ak3) . . . P (AN−1)

|A1.A2.A3 . . . AN | =
{

0, N even number
1 odd number
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−→ P (A1.A2.A3 . . . AN) =

{
0, N even number

1

2N−1
N odd number

−→ P (A1.A2.A3 . . . AN) 6= P (A1).P (A2).P (A3) . . . .P (AN) =
1

2N

Now let’s consider a similar experiment, but an even number of colors
will be placed on each side of the dice: on 1 = C0

N walls there are 0 colors

applied (the wall remains unpainted – for example black), on N.(N−1)
2 = C2

N

walls have 2 colors applied, on N.(N−1).(N−2).(N−3)
24 = C4

N walls have 4 colors
applied, and so on.

Again, we consider the tetrahedron, octahedron, and general case:

4) The dice is a regular tetrahedron. N = 3 colors. 4 =
+∞∑

k=−∞
C2k

3 =

23−1. 3 colors are applied to the sides of the dice – white (1), green (2) and
red (3). On 1 = C0

3 walls there are zero colors, on 3 = C2
3 walls there are

2 colors applied. Then

|A1| = |A2| = |A3| = 2 −→ P (A1) = P (A2) = P (A3) =
2

4
=

1

2
|A1A2| = |A1A3| = |A2A3| = 1 −→

P (A1A2) =
1

4
= P (A1).P (A2),

P (A1A3) =
1

4
= P (A1).P (A3),

P (A2A3) =
1

4
= P (A2).P (A3),

|A1A2A3| = 0 −→ P (A1A2A3) = 0 6= P (A1).P (A2).P (A3) =
1

8

5) The dice is a regular octahedron. N = 4 colors. 8 =
+∞∑

k=−∞
C2k

4 =

24−1.

There are 4 colors on the sides of the dice – white (1), green (2), red
(3) and blue (4). There are zero colors on the 1 = C0

4 faces, 2 colors on the
6 = C2

4 faces, and four colors on the 1 = C4
4 faces.
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Then

|A1| = |A2| = |A3| = |A4| = 4 −→ P (A1) = P (A2) = P (A3) =
4

8
=

1

2
|A1A2| = |A1A3| = |A1A4| = |A2A3| = |A2A4| = |A3A4| = 2 −→

P (A1A2) =
2

8
=

1

4
= P (A1).P (A2),

P (A1A3) =
2

8
=

1

4
= P (A1).P (A3),

P (A1A4) =
2

8
=

1

4
= P (A1).P (A4),

P (A2A3) =
2

8
=

1

4
= P (A2).P (A3),

P (A2A4) =
2

8
=

1

4
= P (A2).P (A4),

P (A3A4) =
2

8
=

1

4
= P (A3).P (A4),

|A1A2A3| = |A1A2A4| = |A1A3A4| = |A2A3A4| = 1 −→

P (A1A2A3) =
1

8
= P (A1).P (A2).P (A3),

P (A1A2A4) =
1

8
= P (A1).P (A2).P (A4),

P (A1A3A4) =
1

8
= P (A1).P (A3).P (A4),

P (A2A3A4) =
1

8
= P (A2).P (A3).P (A4),

P (A1A2A3A4) =
1

8
6= P (A1).P (A2).P (A3).P (A4) =

1

16

6) General case. N colors. N ≥ 3.

The dice is a regular bipyramid. The base of a bipyramid is a regular

polygon with 2N−2 sides, and a bipyramid has
+∞∑

k=−∞
C2k
N = 2N−1 faces that

are equal isosceles triangles.

The sides of the dice have N colors. On 1 = C0
N walls there is one

color, on N.(N−1)
2 = C2

N sides there are 2 colors, on N.(N−1).(N−2).(N−3)
24 = C4

N

sides there are 4 colors, and so on.

The total number of colored walls is C0
N + C2

N + C4
N + · · · = 2N−1.
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Let Ak = {the kth color has appeared on the side}, k = 1, 2, 3, 4, . . . , N .

|Ak| = C−1
N−1 + C1

N−1 + C3
N−1 + C5

N−1 + · · · = 2N−2

−→ P (Ak) =
2N−2

2N−1
=

1

2
|Ak1.Ak2| = C−2

N−2 + C0
N−2 + C2

N−2 + C4
N−2 + · · · = 2N−3

−→ P (Ak1.Ak2) =
2N−3

2N−1
=

1

4
= P (Ak1).P (Ak2)

|Ak1.Ak2.Ak3| = C−3
N−3 + C−1

N−3 + C1
N−3 + C3

N−3 + · · · = 2N−4

−→ P (Ak1.Ak2.Ak3) =
2N−4

2N−1
=

1

8
= P (Ak1).P (Ak2).P (Ak3)

(the first combinations are for the single-color walls, the second are for the
three-color walls, the third are for the five-color walls, etc.)

. . .

|Ak1.Ak2.Ak3 . . . Aks| = C−sN−s + C2−s
N−s + C4−s

N−s + C6−s
N−s + · · · = 2N−s−1

−→ P (Ak1.Ak2.Ak3. . . . .Aks) =
2N−s−1

2N−1

=
1

2s
= P (Ak1).P (Ak2).P (Ak3). . . . .P (As)

. . .

|Ak1.Ak2.Ak3. . . . .AkN−1| = 1

−→ P (Ak1.Ak2.Ak3 . . . AkN−1) =
1

2N−1

= P (Ak1).P (Ak2).P (Ak3). . . . .P (AN−1)

|A1.A2.A3. . . . .AN | =
{

1, N even
0, N odd

−→ P (A1.A2.A3. . . . .AN) =

{
1

2N−1
, N even

0, N odd

−→ P (A1.A2.A3. . . . .AN) 6= P (A1).P (A2).P (A3). . . . .P (AN) =
1

2N

And in this case we got events that are not independent in aggregate,
but for each of their subset of k, k < N events Ak1.Ak2.Ak3. . . . .AkN−1

these events are collectively independent. The difference is the probability
P (A1.A2.A3. . . . .AN).
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To illustrate better the complexity of the i situation with indepen-
dence in these trials, we will consider a combination of the two trials (with
an even and an odd number of wall colors) by combining them into one:

Consider the following experiment: we have two symmetric dice with
2N−1 faces each, which are colored N different colors, the first being colored
according to the “odd rule” (with 1, 3, 5, . . . colors on the faces) and the
second is colored according to the “even rule” (with 0, 2, 4, . . . colors on
the walls) as described above. We toss a fair coin and if it lands heads
(event H1 with probability 1

2) then we roll the first die with the odd number

of colors on the walls, and if it lands heads (event H2 with probability 1
2)

then we roll the second die with the even number of colors on the walls.
Then for each of the events Ak1.Ak2.Ak3. . . . .Aks we have (by the formula
for the total probability)

P (Ak1.Ak2.Ak3. . . . .Aks) = P (H1).P (Ak1.Ak2.Ak3. . . . .Aks|H1)+

+ P (H2).P (Ak1.Ak2.Ak3. . . . .Aks|H2)

=
1

2s
, s = 1, 2, 3, 4, . . . , N.

The case s = N differs from the others, but this probability is trivially
computed here as well.

We obtained that the events A1, A2, A3, . . . , AN are collectively
independent in this trial! In the two separate experiments (rolling a die
with an even or odd number of wall colors) we have no independence in
aggregate, but when they are combined the dependence disappears!

In fact, this trial is equivalent to the following trial with only one
symmetric die: given a symmetric die with 2N faces that are colored N
different colors, with 1 = C0

N faces having zero colors, N = C1
N faces

there is 1 color applied, on N.(N−1)
2 = C2

N walls there are 2 colors applied,

on N.(N−1).(N−2)
6 = C3

N there are 3 colors applied, 4 colors are applied to
N.(N−1).(N−2).(N−3)

24 = C4
N walls, etc. (we have 2N−1 walls each colored with

an even number of colors and 2N−1 walls each colored with an odd number
of colors).

The dice is thrown and it is counted on which wall it landed. If the
die lands on a side with an odd number of colors, we have an event H1 with
probability 1

2 . If the die falls on a side with an even number of colors, we

have an event H2 with probability 1
2 . The probabilities of the remaining
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events are calculated according to the above scheme and turn out to be
again P (Ak1.Ak2.Ak3. . . . .Aks) = 1

2s , s = 1, 2, 3, 4, . . . , N .

Comments:

Instead of a symmetric dice to generate the trials, another physical
object generating the 2N outcomes with equal probabilities (e.g. a roulette
wheel) can be used. Other combinatorial dependencies can be used to give
other schemes illustrating the complexity of the notions of “independence”
and “mutual independence”.

Examples of real dice (for illustration):

Figure 5. Figure 6.

Figure 7. Examples of symmetric dice.

Some are Platonic solids, others are bipyramidal in shape.
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