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ISOMORPHISM OF FINITE

HAMILTONIAN GROUPS

Yordan Epitropov, Nako Nachev

Abstract. In this paper we find the necessary and sufficient condition for
isomorphism of finite Hamiltonian groups. Namely, if G and H are finite
Hamiltonian groups, then G ∼= H if and only if G/G(1) ∼= H/H(1), where
G(1) and H(1) are, respectively, the commutator subgroups of G and H.
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1. Introduction

If the group G has the property that every subgroup of it is normal,
then G is called Dedekind group.

For example, every Abelian group is a Dedekind group. The norm of
each group is also Dedekind group. Every nilpotent T -group is a Dedekind
group, and every Dedekind group is a T -group.

It turns out that there are noncommutative groups with this property
which are called Hamiltonian groups.

Definition 1.1. [2, p. 190] A group G is called Hamiltonian if it is non-
Abelian and every subgroup of G is normal.

The finite Hamiltonian groups were introduced by R. Dedekind in
1895.

In [2, Theorem 12.5.4] the following representation of Hamiltonian
groups is given directly:

Theorem 1.1. A Hamiltonian group is the direct product of a quaternion
group with an Abelian group in which every element is of finite odd order
and an Abelian group of exponent two.

Thus, the quaternion group is the Hamiltonian group of the smallest
order. Every Hamiltonian group is locally finite.
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Important results for Hamiltonian groups have been published in
recent years. In [3, Proposition 2] is given the number of Hamiltonian
groups of an arbitrary order n = 2eo, where o is an odd number. In [6,
Theorem 2.1] it is calculated the number of elements of a given order and
in [6, Theorem 2.5] the total number of subgroups in a finite Hamiltonian
group. In addition, we will note the interesting work [4], in which are
examined Hamiltonian groups with perfect order classes.

Hamiltonian groups have applications in diverse fields, including Num-
ber Theory, Geometry, Physics, and Cryptography. Their properties make
them suitable for the implementations of some computer algorithms.

The authors are not aware of any other necessary and sufficient con-
ditions for isomorphism of finite Hamiltonian groups, other than the direct
product from Theorem 1.1 and it’s other forms. That makes the condition
for isomorphism in Theorem 3.1 particularly valuable.

2. Results on Hamiltonian groups

Lemma 2.1. A noncommutative group G is a Hamiltionian group if and
only if each of its cyclic subgroups is a normal subgroup of G.

Proof: The necessity follows from the definition of Hamiltonian group.

To prove the sufficiency let us take a subgroup H of the given Hamil-
tionian group and an element a ∈ H. Then all elements conjugate of a lie
in the cyclic subgroup 〈a〉. Since 〈a〉 is a subgroup of H, then H contains
a together with all elements conjugated of a. From this follows that H is
a normal subroup of G.

Definition 2.1. [5, Section 1.13, p. 10] Every element of order 2 of one
group is called an involution.

Proposition 2.1. The group G is Hamiltonian if and only if the following
conditions are fulfilled:

(2.1) the order of the commutator subgroup G(1) of G is 2;

(2.2) every involution is a central element of G;

(2.3) the second power of every element of order 4 is a generator of G(1);

(2.4) G does not contain an element of order 8.
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Proof: The necessity immediately follows from Theorem 1.1.

To prove the sufficiency Lemma 2.1 is used. From condition (2.1) it
follows that the Hamiltonian group G is noncommutative.

Let b ∈ G be an element of odd order. We will prove that b is a
central element of the group G. Suppose there exists an element a of G,
which does not commute with b. Then we have the equality a−1ba = bc,
where 〈c〉 = G(1) and c2 = 1, c 6= 1. By raising the equality to the power
of m, where m is the order of b, and considering that c is a central element
we obtain cm = 1. But since m is an odd natural number and the order
of c is 2 then cm = c. From here it follows that c = 1, which leads to a
contradiction. This proves that every cyclic subgroup of G of odd order is
contain in the center of G and thus it is normal.

Condition (2.4) implies that the order of every element of the group
G is not divisible by 8. Therefore, every cyclic subgroup of it can be
decomposed into a direct product of two cyclic groups, where one of them
is of an odd order and the other is of an order of 1, 2 or 4. The unit
subgroup is normal and from condition (2.2) follows that the subgroups of
order 2 are also normal. From that follows that a cyclic subgroup, whose
order is not divisible by 4 is a normal subgroup of G.

It remains to be proven that the cyclic subgroups of order 4 are
normal subgroups of the group G and to apply Lemma 2.1. Let d ∈ G be an
element of order 4. Condition (2.3) implies that d2 = c. Let f be an element
of G which does not commute with d. Then it holds f−1df = dc = d3 ∈ 〈d〉.
This shows that 〈d〉 is a normal subgroup of G.

Note 2.1. The fact that the commutator subgroup of a Hamiltonian group
is a cyclic group of order 2, i.e. condition (2.1), can also be found in
[1, Lemma 3, (ii)].

3. Main result

Theorem 3.1. If G and H are finite Hamiltonian groups, then G ∼= H if
and only if G/G(1) ∼= H/H(1).

Proof: Necessity. Since the commutator subgroup of every group is a fully
characteristic subgroup of this group, then every isomorphism ϕ : G→ H

33



29 Nov – 01 Dec 2023, Pamporovo, Bulgaria

induces isomorphism ϕ(1) : G(1) → H(1). From here immediately follows
the isomorphism ϕ̄ : G/G(1) → H/H(1).

Sufficiency. Let us denote the quaternion group of order 8 with Q8.
From Theorem 1.1 we have the direct decompositions

G = A×B × C and H = D × E × F, (1)

where A ∼= Q8 and D ∼= Q8, B and E are finite groups of odd order, C and
F are finite groups with exponent 2. Since G(1) ≤ A and H(1) ≤ D then

G/G(1) ∼= A/G(1) ×B × C and H/H(1) ∼= D/H(1) × E × F.

The isomorphism of those quotient groups implies that

A/G(1) ×B × C ∼= D/H(1) × E × F. (2)

The subgroups B and E coincide with the sets of all elements of
odd order of the respective quotient groups and due to that they are fully
characteristic subgroups of those quotient groups. Then from the isomor-
phism (2) follows B ∼= E. For the cardinality of C and F from this iso-
morphism it follows the equality 1 + |C| = 1 + |F | from where |C| = |F |.
But since C and F are Abelian with exponent 2, then from the equality of
their cardinality follows C ∼= F . And so we obtain

A ∼= D, B ∼= E and C ∼= F.

From those isomorphisms and the direct decomposition (1) it finally
follows G ∼= H.

4. An open question

Let G be a finite Hamiltonian group, H be an arbitrary finite group
and F be a such field, that the group algebra FG is semisimple. Is it true
that FG ∼= FH if and only if G ∼= H?

Solving this problem is important, because the minimal ideals of the
group algebra FG are used in Coding theory for the construction of codes
with a variety of properties.
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