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NUMERICAL SOLVING

OF THE SINE-GORDON EQUATION
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Abstract. The sine-Gordon equation is a nonlinear partial differential
equation, describing a multitude of physical phenomena. In this paper, the
(1+1)-dimensional sine-Gordon equation is numerically solved, utilizing
the Crank-Nicolson method and tridiagonal sweep. The results are verified
by comparison with analytical solutions. An error estimate is presented.

Key words: Partial differential equation, Nonlinearity, Sine-Gordon equa-
tion, Crank-Nicolson.

Mathematics Subject Classification: 65M06, 65N06.

1. Introduction

The sine-Gordon equation

uxx − utt = sin (u) (1)

is an important nonlinear partial differential equation, first appearing in
differential geometry [1]. Its name comes from its linearization, known in
quantum mechanics as the Klein-Gordon equation uxx − utt = u.

Among its many applications, some are the description of self-induced
transparency [2], the dynamics in long Josephson junctions [3], the de-
scription of magnetic domain wall dynamics [4], the classical model of
one-dimensional dislocation theory [1].

In [5] a classification of some analytical solutions is presented. The
main feature of most solutions of (1) is the form of the partial derivative
with respect to x, it being a soliton – a localized disturbance or pulse that
retains its shape after interacting with other solitons [1].

A couple of the solutions have been used as a source of initial and
boundary conditions:
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1. Travelling wave solution

u(x, t) = ±4 arctan

[
c exp

(
x± vt√
1− v2

)]
, (2)

where v =
√
s2−1
s , c and s2 > 1 are constants and all sign combina-

tions are possible.

2. Two-soliton solution

u(x, t) = ±4 arctan

[√
s2 − 1

s

sinh(sx+ c1)

cosh(
√
s2 − 1 · t+ c2)

]
, (3)

where s2 > 1 and c1, c2 are constants of integration.

3. Soliton-Antisoliton solution

u(x, t) = −4 arctan

[
s√
s2 − 1

sinh(
√
s2 − 1 · t+ c2)

cosh(sx+ c1)

]
, (4)

where s2 > 1 and c1, c2 are constants of integration.

4. Breather solution

u(x, t) = −4 arctan

[
s√

1− s2

sin(
√

1− s2 · t+ c2)

cosh(sx+ c1)

]
, (5)

where s2 < 1 and c1, c2 are constants of integration.

In this paper we have considered equation (1) with the initial condi-
tions

u(x, 0) = ϕ(x), x ∈ [a, b]

ut(x, 0) = ψ(x), x ∈ [a, b]

and the boundary conditions

u(a, t) = µL(t), t ∈ [0, T ]

u(b, t) = µR(t), t ∈ [0, T ].
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2. Numerical Approach

The method used in this paper is a variation on the Crank-Nicolson
method [6, 7], which is a second order accuracy finite difference method.
It can be shown that in diffusion equations (and many others) it is uncon-
ditionally stable [8]. It is classically used in problems involving ut as the
highest derivative of u in terms of t. Let us instead consider the equation

utt = F (u, x, t, ux, uxx)

on the intervals x ∈ [a, b], t ∈ [0, T ] and let us create a uniform mesh
with steps h = b−a

n for x and τ = T
m for t, m,n ∈ N. Using the notation

xi = a + ih, tj = jτ , u(xi, tj) = uji and F j
i = F evaluated for xi, tj and

uji (i = 0, n, j = 0,m) we get

uj+1
i − 2uji + uj−1

i

τ 2
=

1

2

[
F j+1
i + F j−1

i

]
.

This is an implicit method – it leads to a system of algebraic equations for
the layer t = (j + 1)τ , which in general is nonlinear. If F is linear, then
the system will be tridiagonal, allowing to be solved efficiently by using a
tridiagonal sweep [9].

Our approach of providing the scheme is to separate F = uxx−sin(u)
into a linear (uxx) and a nonlinear part (− sin(u)) and employ linear in-
terpolation on uxx. If L2(xi, t) denotes the Lagrange interpolation polyno-

mial of uxx on the interval t ∈ [tj−1, tj+1] with nodes (xi, tj−1, uxx
j−1
i ) and

(xi, tj+1, uxx
j+1
i ) we get the following estimate

|uxx − L2(xi, t)| ≤
M3

3!
|(t− tj−1)(t− tj+1)| = O(τ 2)

where M3 = max
t∈[tj−1,tj+1]

{uxxttt|x=xi,t}. The advantage to this approach is

removing the necessity of solving a nonlinear system of equations, while
keeping the implicit nature of the method.

Let us consider the discretization of equation (1)

utt
j
i = uxx

j
i − sin

(
uji

)
(6)

and then, applying midpoint second order accuracy finite differences and
the linear interpolation of uxx at the point (xi, tj), the left hand side (LHS)
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and right hand side (RHS) become

LHS =
uj+1
i − 2uji + uj−1

i

τ 2

RHS =
1

2

[
uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2
+
uj−1
i+1 − 2uj−1

i + uj−1
i−1

h2

]
− sin

(
uji

)
.

After some algebraic transformations we are left with

τ 2

2h2
uj+1
i−1 −

(
1 +

τ 2

h2

)
uj+1
i +

τ 2

2h2
uj+1
i+1 =

= uj−1
i − 2uji −

τ 2

2h2
(uj−1

i−1 − 2uj−1
i + uj−1

i+1 ) + τ 2 sin (uji )

(7)

for i = 1, n− 1, j = 1,m− 1. The stencil is shown on Figure 1.

Figure 1. Stencil for the Crank-Nicolson method

For simplicity, let us denote the RHS of (7) as zj+1
i . Then we can

express the scheme as a system of linear algebraic equations

Auj+1 = zj+1,

where

A =



−
(

1 + τ2

h2

)
τ

2h2 0

τ2

2h2 −
(

1 + τ2

h2

)
τ

2h2

· · · 0
... . . . ...

0 · · ·
τ2

2h2 −
(

1 + τ2

h2

)
τ

2h2

0 τ2

2h2 −
(

1 + τ2

h2

)


,
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uj+1 = (uj+1
1 , uj+1

2 , . . . uj+1
n−2, u

j+1
n−1)

T ,

zj+1 =

(
zj+1

1 − τ 2

2h2
µL(tj+1), z

j+1
2 , . . . zj+1

n−2, z
j+1
n−1 −

τ 2

2h2
µR(tj+1)

)T
,

solving which will give us the layer of values {uj+1
i }n−1

i=1 .

Since we need two layers – uj and uj−1 to find uj+1, we cannot
use this procedure to find u1. In that case we proceed thus – we assume
that u(x, t) is differentiable on the interval t ∈ [−τ, 0] and use the initial
condition

ψ(xi) = ut(xi, 0) =
u1
i − u−1

i

2τ
+O(τ 2), i = 0, n

to express u−1
i . Then we substitute it into (6) and, noting that u0

i = ϕ(xi),
we get

u1
i =

τ 2

2h2
(ϕ(xi+1) + ϕ(xi−1)) +

(
1− τ 2

h2

)
ϕ(xi) + τψ(xi)−

τ 2

2
sin(ϕ(xi)),

through which we can find u1 explicitly and move on to the implicit scheme.

3. Numerical Results

Equations (2–5) have been used as a source of initial and boundary
conditions.

In order to verify the method, we have analyzed the approximation
error. Measuring the error is done by either comparing the results with
the original solution or by substituting the found results in the partial
differential equation, using finite differences as approximations. We will
use the notation eji for the error at the point (xi, tj).

The errors are presented by the maximum recorded error

max
i=0,n,j=0,m

|eji |

and by applying the root mean square error (RMSE)√√√√ 1

(n+ 1)(m+ 1)

m∑
j=0

n∑
i=0

(eji )
2
.

The parameters for the initial and boundary conditions are chosen
thus:
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1. Travelling wave – s = 2, c = 2,

2. Two-soliton – s = 2, c1 = c2 = 0,

3. Soliton-antisoliton – s = 2, c1 = c2 = 0,

4. Breather – s = 0.5, c1 = c2 = 0.

A summary of the results can be found in Table 1.

Case 1
a = −5, b = 5, T = 5, n = 200,m = 400

h2 + τ 2 = 2.66e−3
Solution PDE

Max RMSE Max RMSE
Travelling wave 1.21e−2 2.32e−3 4.42e−3 1.02e−3
Two-soliton 1.21e−2 2.32e−3 4.42e−3 1.02e−3
Soliton-Antisoliton 1.12e−2 2.17e−3 3.67e−3 1.08e−3
Breather 2.54e−4 6.97e−5 3.27e−5 1.01e−5

Case 2
a = −5, b = 5, T = 5, n = 2000,m = 4000

h2 + τ 2 = 2.66e−5
Max RMSE Max RMSE

Travelling wave 1.16e−4 1.62e−5 2.86e−5 7.21e−6
Two-soliton 1.21e−4 2.32e−5 4.47e−5 9.97e−6
Soliton-Antisoliton 1.1e−4 2.17e−5 3.73e−5 1.06e−5
Breather 2.54e−6 6.99e−7 3.36e−7 1.02e−7

Table 1. Numerical results

Plots of some of the found solutions in case 2 and their corresponding
errors are presented in Figures 2–5.

Figure 2. Soliton-antisoliton solution Figure 3. PDE error
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Figure 4. Breather solution Figure 5. Solution error

As can be seen from Table 1 and Figures 2–5, the method performs
according to the predicted order of accuracy, that is, second order in both
x and t.

4. Conclusion

In this paper, we have utilized the Crank-Nicolson method to numer-
ically solve the sine-Gordon equation. We have modified the classic scheme
by considering an equation involving utt and by separating the linear and
nonlinear parts and applying a linear interpolation on uxx. As a results, we
keep the implicit nature of the method, while removing the need to solve a
nonlinear algebraic system of equations, instead solving a linear tridiagonal
one using tridiagonal sweep.

As verification of the method, we have presented results from two
cases with different step sizes and four sets of initial and boundary condi-
tions. Two types of errors are utilized. Graphics of solutions and errors
are presented.
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