
International Scientific Conference IMEA’2023

EXISTENCE SOLUTIONS OF NONLINEAR
FRACTIONAL INTEGRAL EQUATIONS WITH
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Abstract. In this paper, we use a new approach to study the existence,
uniqueness, and stability of solutions to a non-linear Volterra fractional
integral equation with variable order under less restrictive presumptions.
Finally, to illustrate the results of this work, we give an example which
illustrate the applicability of our approach.
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1. Introduction

Integral equation is an important field in the terrain of non-linear
analysis methods, according to the many intervention in various researched
problems. Numerous examined issues are often expressed in differential
forms then converted into integral equations to do the existence of solu-
tion and to facilitate the resolution or make an approximation, see for
example [2, 5, 6].

While many other research works on the existence of solutions to frac-
tional constant order problems have been carried, the existence of solutions
to variable-order problems is infrequently mentioned in the literature, and
there have been only a few research papers on the stability of solutions.
Lately, fractional calculus of variable-order have been considered in var-
ious phenomenons, such as: anomalous diffusion modelling, mechanical
applications, multi-fractional Gaussian noises.

There are numerous papers that have study the existence of solu-
tions of functional integral or differential equations of the fractional con-
stant order. and we can see lately some papers investigating the existence
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of solutions with applying piecewise constant functions method, see for
example [1, 2, 12].

In this paper, we will study the existence with new approach to
replace piecewise constant functions method. As a result of investigating
this intriguing special research topic, our findings are novel and notable.

We deal with a non-linear Volterra fractional integral equation with
variable order,

x(t) = g(t) +

∫ t

0

(t− s)κ(s)−1

Γ(κ(s))
f(s, x(s))ds, t ∈ V := [0, b], (1)

where 0 ≤ t ≤ b < +∞, 0 < κ(t) ≤ 1 for all s ∈ V , Γ is the gamma
function g : V −→ R is a continuous function and f : V × R −→ R is a
given function.

2. Backgrounds

In this section, we introduce notations, definitions, and preliminary
facts that are used throughout this paper.

The following definitions is Riemann-Liouville fractional integral of
variable-order for a function h. We consider the mapping κ(t) : V → (0, 1].
Then, the left Riemann-Liouville fractional integral (RLFI) of variable-
order κ(t) for a function h is defined as [13, 14, 18]

I
κ(t)
0+ h(t) =

1

Γ(κ(t))

∫ t

0

(t− s)κ(t)−1h(s)ds, t > 0.

Provided that the right-hand side is pointwise defined

I
κ(t)
0+ h(t) =

∫ t

0

(t− s)κ(s)−1

Γ(κ(s))
h(s)ds, t > 0.

In the case when κ(t) is a constant, then previous definitions coincides
with the classical Riemann Liouville fractional integral of a constant order,
see, e.g., [10, 13, 14].

Remark 2.1. [21, 19] Note that, the semigroup property does not hold for
arbitrary functions κ(t), v(t), i.e., in general

I
κ(t)
a+ I

v(t)
a+ h(t) 6= I

κ(t)+v(t)
a+ h(t).
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Lemma 2.1. [20] If κ ∈ C(V, (0, 1]), then:

(a) The variable order fractional integral I
κ(t)
0+ h(t) exists at any point on V

for h ∈ Cσ(V,R) where

Cσ(V,R) = {h(t) ∈ C(V,R), tσh(t) ∈ C(V,R), 0 ≤ δ ≤ 1} .

(b) I
κ(t)
0+ h(t) ∈ C(V,R) for h ∈ C(V,R).

In the proof of our main results we will also use the following fixed
point theorem.

Theorem 2.1. [10] (SFPT) Let W be a Banach Space and Q be a Convex,
closed bounded and non-empty subset of W . If Υ : Q −→ Q is Completely
Continuous map, then Υ has at least one Fixed point in Q.

We give now the adaptive definition of the stability in Ulam–Hyers-
Rassias sense.

Definition 2.1. The Equation (1) is Ulam–Hyers-Rassias stable if there
exists Cf > 0 such that for any ε > 0 and for every solution z ∈ C(V,R)
of the inequality∣∣∣∣z(t)− g(t)−

∫ t

0

(t− s)κ(s)−1

Γ(κ(s))
f(s, z(s))ds

∣∣∣∣ ≤ ε, t ∈ V (2)

there exists a solution y ∈ C(V,R) of Equation (1) with

|z(t)− y(t)| ≤ cfε, t ∈ V.

3. Existence Solutions

Throughout the remainder portion of the study, we need the following
assumptions:

(A1) κ : V → (0, κ′] is continuous function, such that 0 < κ(t) ≤ κ′ ≤ 1.

(A2) The function tσf is a continuous function on V × R and there exist
constants 0 ≤ σ < min

0≤t≤b
|κ(t)|, D > 0 such that

tσ|f(t, y)− f(t, ȳ)| ≤ D|y − ȳ|,

for all t ∈ V and y, ȳ ∈ R.

15



29 Nov – 01 Dec 2023, Pamporovo, Bulgaria

Remark 3.1. 1) It follows from the continuity of compose functions that
Γ(κ(t)) is continuous on [0, b], when κ satisfies assumption condition (A1).

Remark 3.2. [19] 2) By the continuity of the function κ(t), we let κ∗ =
min
0≤t≤b

|κ(t)|, thus for 0 ≤ t ≤ b, we have

bκ(t)−1 ≤ 1, if 1 ≤ b ≤ ∞,

or
bκ(t)−1 ≤ bκ

∗−1, if 0 < b ≤ 1.

Thus for b > 0, we conclude that

bκ(t)−1 ≤ max
{

1, bκ
∗−1
}

= b∗.

Now, we will study the non linear fractional integral of Volterra types
with variable order.

Theorem 3.1. Let conditions (A1) and (A2) hold. If

Γ(κ?)Γ(1− σ)b?D b1−σ

Γ(κ′)Γ(1− σ + κ?)
< 1, (3)

then the (1) has a unique solution in C(V,R).

Proof: Consider the operator V : C(V,R) −→ C(V,R) defined by

V(y)(t) = g(t) +

∫ t

0

(t− s)κ(s)−1

Γ(κ(s))
f(s, y(s))ds.

To show that V admits a unique Fixed Point, it suffices to show that
V is a contraction. Hence, by the Banach Contraction Principe, V has a
unique Fixed Point y ∈ C(V,R), which is a unique solution of the (1).

The second result validates the existence of the solutions, using Shau-
der Fixed Point Theorem.

Theorem 3.2. Let conditions (A1) and (A2) hold. If

r

g∗ +
([Dr + f ?] b?) Γ(κ?)Γ(1− σ)

Γ(κ′)Γ(1− σ + k?)
b1−σ

≥ 1, (4)
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where f ∗ = sup
t∈V

tσ|f(t, 0)|, then the equation (1) has at least one solution

in C(V,R).

Proof: Define the set

Br = {y ∈ C(V,R) : ‖y‖ ≤ r}.

Clearly, Br is nonempty, bounded, closed and convex subset of C(V,R).

The proof will be presented in three steps.

Step 1, Claim: V is continuous.

Step 2, Claim: V(Br) ⊆ Br.

Step 3, Claim: V is compact. In order to show that V is compact,
we demonstrate V(Br) is relatively compact. By Step 2, we have that
V(Br) is uniformly bounded or V(Br) = {V(y) : y ∈ Br} ⊆ Br. Thus, for
each y ∈ Br we have ‖V(y)‖ ≤ r which means that V(Br) is bounded. It
remains to indicate that V(Br) is equicontinuous.

Hence, all conditions of the fixed point Theorem are satisfied and
thus, Equation (1) has at least one solution y ∈ Br. Since Br ⊂ C(V,R),
the assertion of Theorem is proved.

4. Ulam Hyers stability

In this section, we study the Ulam-Hyers stability for solutions to
the problem.

Theorem 4.1. Let the conditions of Theorem 3.2 be satisfied. Then, the
integral Equation (1) is Ulam–Hyers stable.

5. Example

In this example, we deal with the following integral equation of the
Volterra type of fractional variable order.

Consider the following fractional problem

y(t) =
1

et + 1
+

∫ t

0

(t− s) 2
7s+

3
5−1

Γ(2
7s+ 3

5)
s−

2
7
y(s) + 1

5
ds, t ∈ V := [0, 1]. (5)
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By identification we have κ(t) =
2

7
t+

3

5
, is a continuous function on

V , and satisfies
3

5
≤ κ(t) ≤ 31

35
.

Also

f(t, y) = t−
2
7

(
1 +

y + 1

5

)
,

is an continuous function on (0, 1]×R. Clearly for t ∈ [0, 1], we have which
implies that condition (A1) holds. Further, we have

t
2
7 |f(t, y1)− f(t, y2)| =

∣∣∣∣t 27 [t− 2
7

(
1 +

y1 + 1

5

)
− t−

2
7

(
1 +

y2 + 1

5

)]∣∣∣∣
≤
∣∣∣∣y1 + 1

5
− y2 + 1

5

∣∣∣∣
≤ 1

5
|y1 − y2|.

Hence condition (A2) holds with σ = 2
7 and D = 1

5 . For the purpose
of verifying (3), it is clear that

r

1 +
Γ(3

5)Γ(5
7)

5Γ(31
35)Γ(46

35)
r +

6Γ(3
5)Γ(5

7)

5Γ(31
35)Γ(46

35)

≥ 1,

is satisfied for each r > 5.5. Hence, condition (4). By Theorem 3.2,
problem (5) has a unique solution.
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